一.課標要求:
1.利用實物模型、計算機軟件觀察大量空間圖形,認識柱、錐、臺、球及其簡單組合體的結構特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結構;
2.能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如:紙板)制作模型,會用斜二側法畫出它們的直觀圖;
3.通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式;
4.完成實習作業(yè),如畫出某些建筑的視圖與直觀圖(在不影響圖形特征的基礎上,尺寸、線條等不作嚴格要求);
二.命題走向
近幾年來,立體幾何高考命題形式比較穩(wěn)定,題目難易適中,解答題常常立足于棱柱、棱錐和正方體位置關系的證明和夾角距離的求解,而選擇題、填空題又經(jīng)常研究空間幾何體的幾何特征和體積表面積。因此復習時我們要首先掌握好空間幾何體的空間結構特征。培養(yǎng)好空間想能力。
預測高考對該講的直接考察力度可能不大,但經(jīng)常出一些創(chuàng)新型題目,具體預測如下:
(1)題目多出一些選擇、填空題,經(jīng)常出一些考察空間想象能力的試題;解答題的考察位置關系、夾角距離的載體使空間幾何體,我們要想像的出其中的點線面間的位置關系;
(2)研究立體幾何問題時要重視多面體的應用,才能發(fā)現(xiàn)隱含條件,利用隱蔽條件解題。
三.要點精講
1.柱、錐、臺、球的結構特征
(1)柱
棱柱:一般的,有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱;棱柱中兩個互相平行的面叫做棱柱的底面,簡稱為底;其余各面叫做棱柱的側面;相鄰側面的公共邊叫做棱柱的側棱;側面與底面的公共頂點叫做棱柱的頂點。
底面是三角形、四邊形、五邊形……的棱柱分別叫做三棱柱、四棱柱、五棱柱……
圓柱:以矩形的一邊所在的直線為旋轉軸,其余邊旋轉形成的曲面所圍成的幾何體叫做圓柱;旋轉軸叫做圓柱的軸;垂直于軸的邊旋轉而成的曲面叫做圓柱的側面;無論旋轉到什么位置,不垂直于軸的邊都叫做圓柱側面的母線。
棱柱與圓柱統(tǒng)稱為柱體;
(2)錐
棱錐:一般的有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體叫做棱錐;這個多邊形面叫做棱錐的底面或底;有公共頂點的各個三角形面叫做棱錐的側面;各側面的公共頂點叫做棱錐的頂點;相鄰側面的公共邊叫做棱錐的側棱。
底面是三角錐、四邊錐、五邊錐……的棱柱分別叫做三棱錐、四棱錐、五棱錐……
圓錐:以直角三角形的一條直角邊所在的直線為旋轉軸,其余兩邊旋轉形成的曲面所圍成的幾何體叫做圓錐;旋轉軸為圓錐的軸;垂直于軸的邊旋轉形成的面叫做圓錐的底面;斜邊旋轉形成的曲面叫做圓錐的側面。
棱錐與圓錐統(tǒng)稱為錐體。
(3)臺
棱臺:用一個平行于底面的平面去截棱錐,底面和截面之間的部分叫做棱臺;原棱錐的底面和截面分別叫做棱臺的下底面和上底面;棱臺也有側面、側棱、頂點。
圓臺:用一個平行于底面的平面去截圓錐,底面和截面之間的部分叫做圓臺;原圓錐的底面和截面分別叫做圓臺的下底面和上底面;圓臺也有側面、母線、軸。
圓臺和棱臺統(tǒng)稱為臺體。
(4)球
以半圓的直徑所在的直線為旋轉軸,半圓面旋轉一周形成的幾何體叫做球體,簡稱為球;半圓的圓心叫做球的球心,半圓的半徑叫做球的半徑,半圓的直徑叫做球的直徑。
(5)組合體
由柱、錐、臺、球等幾何體組成的復雜的幾何體叫組合體。
2.空間幾何體的三視圖
三視圖是觀測者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形。
他具體包括:
(1)正視圖:物體前后方向投影所得到的投影圖;
它能反映物體的高度和長度;
(2)側視圖:物體左右方向投影所得到的投影圖;
它能反映物體的高度和寬度;
(3)俯視圖:物體上下方向投影所得到的投影圖;
它能反映物體的長度和寬度;
3.空間幾何體的直觀圖