一、基礎(chǔ)知識(shí)
1.橢圓的定義,第一定義:平面上到兩個(gè)定點(diǎn)的距離之和等于定長(大于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的軌跡,即|PF1|+|PF2|=2a (2a>|F1F2|=2c).
第二定義:平面上到一個(gè)定點(diǎn)的距離與到一條定直線的距離之比為同一個(gè)常數(shù)e(0
(0
第三定義:在直角坐標(biāo)平面內(nèi)給定兩圓c1: x2+y2=a2, c2: x2+y2=b2, a, b∈R+且a≠b。從原點(diǎn)出發(fā)的射線交圓c1于P,交圓c2于Q,過P引y軸的平行線,過Q引x軸的平行線,兩條線的交點(diǎn)的軌跡即為橢圓。
2.橢圓的方程,如果以橢圓的中心為原點(diǎn),焦點(diǎn)所在的直線為坐標(biāo)軸建立坐標(biāo)系,由定義可求得它的標(biāo)準(zhǔn)方程,若焦點(diǎn)在x軸上,列標(biāo)準(zhǔn)方程為
(a>b>0),