一、基礎(chǔ)知識(shí)
在本章中約定用A,B,C分別表示△ABC的三個(gè)內(nèi)角,a, b, c分別表示它們所對(duì)的各邊長(zhǎng),為半周長(zhǎng)。
1.正弦定理: =2R(R為△ABC外接圓半徑)。
推論1:△ABC的面積為S△ABC=
推論2:在△ABC中,有bcosC+ccosB=a.
推論3:在△ABC中,A+B=,解a滿足,則a=A.
正弦定理可以在外接圓中由定義證明得到,這里不再給出,下證推論。先證推論1,由正弦函數(shù)定義,BC邊上的高為bsinC,所以S△ABC=;再證推論2,因?yàn)锽+C= -A,所以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,兩邊同乘以2R得bcosC+ccosB=a;再證推論3,由正弦定理,所以,即sinasin( -A)=sin( -a)sinA,等價(jià)于 [cos( -A+a)-cos( -A-a)]= [cos( -a+A)-cos( -a-A)],等價(jià)于cos( -A+a)=cos( -a+A),因?yàn)?< -A+a, -a+A< . 所以只