1.伯努利試驗(yàn)與二項(xiàng)分布
(1)伯努利試驗(yàn)
只包含兩個(gè)可能結(jié)果的試驗(yàn)叫做伯努利試驗(yàn);將一個(gè)伯努利試驗(yàn)獨(dú)立地重復(fù)進(jìn)行n次所組成的隨機(jī)試驗(yàn)稱為n重伯努利試驗(yàn).
(2)二項(xiàng)分布
一般地,在n重伯努利試驗(yàn)中,設(shè)每次試驗(yàn)中事件A發(fā)生的概率為p(0<p<1),用X表示事件A發(fā)生的次數(shù),則X的分布列為P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.
如果隨機(jī)變量X的分布列具有上式的形式,則稱隨機(jī)變量X服從二項(xiàng)分布,記作X~B(n,p).
2.兩點(diǎn)分布與二項(xiàng)分布的均值、方差
(1)若隨機(jī)變量X服從兩點(diǎn)分布,則E(X)=p,D(X)=p(1-p).
(2)若X~B(n,p),則E(X)=np,D(X)=np(1-p).
3.超幾何分布
一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=,k=m,m+1,m+2,…,r,其中,n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},如果隨機(jī)變量X的分布列具有上式的形式,那么稱隨機(jī)變量X服從超幾何分布.