考試要求 1.通過(guò)實(shí)例分析,了解平均變化率、瞬時(shí)變化率,了解導(dǎo)數(shù)概念的實(shí)際背景.2.通過(guò)函數(shù)圖象,理解導(dǎo)數(shù)的幾何意義.3.了解利用導(dǎo)數(shù)定義求基本初等函數(shù)的導(dǎo)數(shù).4.能利用基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù).5.能求簡(jiǎn)單的復(fù)合函數(shù)(形如f(ax+b))的導(dǎo)數(shù).
1.導(dǎo)數(shù)的概念
(1)如果當(dāng)Δx→0時(shí),平均變化率無(wú)限趨近于一個(gè)確定的值,即有極限,則稱(chēng)y=f(x)在x=x0處可導(dǎo),并把這個(gè)確定的值叫做y=f(x)在x=x0處的導(dǎo)數(shù)(也稱(chēng)瞬時(shí)變化率),記作f′(x0)或y′|x=x0,即f′(x0)= =.
(2)當(dāng)x=x0時(shí),f′(x0)是一個(gè)唯一確定的數(shù),當(dāng)x變化時(shí),y=f′(x)就是x的函數(shù),我們稱(chēng)它為y=f(x)的導(dǎo)函數(shù)(簡(jiǎn)稱(chēng)導(dǎo)數(shù)),記為f′(x)(或y′),即f′(x)=y′=
.
2.導(dǎo)數(shù)的幾何意義
函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)的幾何意義就是曲線(xiàn)y=f(x)在點(diǎn)P(x0,f(x0))處的切線(xiàn)的斜率,相應(yīng)的切線(xiàn)方程為y-f(x0)=f′(x0)(x-x0).
3.基本初等函數(shù)的導(dǎo)數(shù)公式