1.等比數(shù)列的概念
(1)定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比都等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(顯然q≠0).
數(shù)學語言表達式:=q(n≥2,q為非零常數(shù)).
(2)等比中項:如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項.此時G2=ab.
2.等比數(shù)列的通項公式及前n項和公式
(1)若等比數(shù)列{an}的首項為a1,公比是q,則其通項公式為an=a1qn-1;
通項公式的推廣:an=amqn-m.
(2)等比數(shù)列的前n項和公式:當q=1時,Sn=na1;當q≠1時,Sn==.
3.等比數(shù)列的性質(zhì)
已知{an}是等比數(shù)列,Sn是數(shù)列{an}的前n項和.
(1)若k+l=m+n(k,l,m,n∈N*),則有ak·al=am·an.
(2)相隔等距離的項組成的數(shù)列仍是等比數(shù)列,即ak,ak+m,ak+2m,…仍是等比數(shù)列,公比為qm.
(3)當q≠-1,或q=-1且n為奇數(shù)時,Sn,S2n-Sn,S3n-S2n,…仍成等比數(shù)列,其公比為qn.