1.函數(shù)的零點(diǎn)
(1)概念:對(duì)于一般函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn).
(2)函數(shù)的零點(diǎn)、函數(shù)的圖象與x軸的交點(diǎn)、對(duì)應(yīng)方程的根的關(guān)系:
2.函數(shù)零點(diǎn)存在定理
(1)條件:①函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是一條連續(xù)不斷的曲線;②f(a)·f(b)<0.
(2)結(jié)論:函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)至少有一個(gè)零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的解.
1.若連續(xù)不斷的函數(shù)f(x)在定義域上是單調(diào)函數(shù),則f(x)至多有一個(gè)零點(diǎn).函數(shù)的零點(diǎn)不是一個(gè)“點(diǎn)”,而是方程f(x)=0的實(shí)根.
2. 由函數(shù)y=f(x)(圖象是連續(xù)不斷的)在閉區(qū)間[a,b]上有零點(diǎn)不一定能推出f(a)·f(b)<0,如圖所示,所以f(a)·f(b)<0是y=f(x)在閉區(qū)間[a,b]上有零點(diǎn)的充分不必要條件.
3.周期函數(shù)如果有零點(diǎn),則必有無(wú)窮多個(gè)零點(diǎn).