1.思考辨析(在括號內(nèi)打“√”或“×”)
(1)平面內(nèi)與一個定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡一定是拋物線.( )
(2)方程y=ax2(a≠0)表示的曲線是焦點(diǎn)在x軸上的拋物線,且其焦點(diǎn)坐標(biāo)是,準(zhǔn)線方程是x=-.( )
(3)拋物線既是中心對稱圖形,又是軸對稱圖形.( )
(4)若直線與拋物線只有一個交點(diǎn),則直線與拋物線一定相切.( )
答案 (1)× (2)× (3)× (4)×
解析 (1)當(dāng)定點(diǎn)在定直線上時,軌跡為過定點(diǎn)F與定直線l垂直的一條直線,而非拋物線.
(2)方程y=ax2(a≠0)可化為x2=y,是焦點(diǎn)在y軸上的拋物線,且其焦點(diǎn)坐標(biāo)是,準(zhǔn)線方程是y=-.
(3)拋物線是只有一條對稱軸的軸對稱圖形.
(4)一條直線平行于拋物線的對稱軸,此時與拋物線只有一個交點(diǎn),但不相切.
2.(易錯題)拋物線y=-x2的焦點(diǎn)坐標(biāo)是( )
A.(0,-1) B.(0,1)
C.(1,0) D.(-1,0)
答案 A
解析 拋物線y=-x2的標(biāo)準(zhǔn)方程為x2=-4y,開口向下,p=2,=1,故焦點(diǎn)為(0,-1).