授課類型:新授課
【教學(xué)目標(biāo)】
1.知識與技能:掌握線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡單的實(shí)際問題;
2.過程與方法:經(jīng)歷從實(shí)際情境中抽象出簡單的線性規(guī)劃問題的過程,提高數(shù)學(xué)建模能力;
3.情態(tài)與價(jià)值:引發(fā)學(xué)生學(xué)習(xí)和使用數(shù)學(xué)知識的興趣,發(fā)展創(chuàng)新精神,培養(yǎng)實(shí)事求是、理論與實(shí)際相結(jié)合的科學(xué)態(tài)度和科學(xué)道德。
【教學(xué)重點(diǎn)】
利用圖解法求得線性規(guī)劃問題的最優(yōu)解;
【教學(xué)難點(diǎn)】
把實(shí)際問題轉(zhuǎn)化成線性規(guī)劃問題,并給出解答,解決難點(diǎn)的關(guān)鍵是根據(jù)實(shí)際問題中的已知條件,找出約束條件和目標(biāo)函數(shù),利用圖解法求得最優(yōu)解。
【教學(xué)過程】
1.課題導(dǎo)入
[復(fù)習(xí)引入]:
1、二元一次不等式Ax+By+C>0在平面直角坐標(biāo)系中表示直線Ax+By+C=0某一側(cè)所有點(diǎn)組成的平面區(qū)域(虛線表示區(qū)域不包括邊界直線)
2、目標(biāo)函數(shù), 線性目標(biāo)函數(shù),線性規(guī)劃問題,可行解,可行域, 最優(yōu)解: