(一)教學(xué)目標(biāo)
1.知識(shí)與技能:通過(guò)實(shí)例,理解等差數(shù)列的概念;探索并掌握等差數(shù)列的通項(xiàng)公式;能在具體的問(wèn)題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題;體會(huì)等差數(shù)列與一次函數(shù)的關(guān)系。
2. 過(guò)程與方法:通過(guò)對(duì)歷史有名的高斯求和的介紹,引導(dǎo)學(xué)生發(fā)現(xiàn)等差數(shù)列的第k項(xiàng)與倒數(shù)第k項(xiàng)的和等于首項(xiàng)與末項(xiàng)的和這個(gè)規(guī)律;由學(xué)生建立等差數(shù)列模型用相關(guān)知識(shí)解決一些簡(jiǎn)單的問(wèn)題,進(jìn)行等差數(shù)列通項(xiàng)公式應(yīng)用的實(shí)踐操作并在操作過(guò)程中,通過(guò)類比函數(shù)概念、性質(zhì)、表達(dá)式得到對(duì)等差數(shù)列相應(yīng)問(wèn)題的研究。
3.情態(tài)與價(jià)值:培養(yǎng)學(xué)生利用學(xué)過(guò)的知識(shí)解決與現(xiàn)實(shí)有關(guān)的問(wèn)題的能力。
(二)教學(xué)重、難點(diǎn)
重點(diǎn):探索并掌握等差數(shù)列的前n項(xiàng)和公式;學(xué)會(huì)用公式解決一些實(shí)際問(wèn)題,體會(huì)等差數(shù)列的前n項(xiàng)和與二次函數(shù)之間的聯(lián)系。
難點(diǎn):等差數(shù)列前n項(xiàng)和公式推導(dǎo)思路的獲得,靈活應(yīng)用等差數(shù)列前n項(xiàng)公式解決一些簡(jiǎn)單的有關(guān)問(wèn)題
(三)學(xué)法與教學(xué)用具
學(xué)法:講練結(jié)合
教學(xué)用具:投影儀
(四)教學(xué)設(shè)想
[創(chuàng)設(shè)情景]
等差數(shù)列在現(xiàn)實(shí)生活中比較常見(jiàn),因此等差數(shù)列求和就成為我們?cè)趯?shí)際生活中經(jīng)常遇到的問(wèn)題。在200多年前,歷史上最偉大的數(shù)學(xué)家之一,被譽(yù)為“數(shù)學(xué)王子”的高斯就曾經(jīng)上演了迅速求出等差數(shù)列這么一出好戲。那時(shí),高斯的數(shù)學(xué)老師提出了下面的問(wèn)題:1+2+3+……+100=?當(dāng)時(shí),當(dāng)其他同學(xué)忙于把100個(gè)數(shù)逐項(xiàng)相加時(shí),10歲的高斯卻用下面的方法迅速算出了正確答案:(1+100)+(2+99)+……+(50+51)=101×50=5050
高斯的算法實(shí)際上解決了求等差數(shù)列1,2,3,…,n,…前100項(xiàng)的和的問(wèn)題。
今天我們就來(lái)學(xué)習(xí)如何去求等差數(shù)列的前n項(xiàng)的和。