◆ 知識與技能目標
理解橢圓的概念,掌握橢圓的定義、會用橢圓的定義解決實際問題;理解橢圓標準方程的推導過程及化簡無理方程的常用的方法;了解求橢圓的動點的伴隨點的軌跡方程的一般方法.
◆ 過程與方法目標
(1)預習與引入過程
當變化的平面與圓錐軸所成的角在變化時,觀察平面截圓錐的截口曲線(截面與圓錐側面的交線)是什么圖形?又是怎么樣變化的?特別是當截面不與圓錐的軸線或圓錐的母線平行時,截口曲線是橢圓,再觀察或操作了課件后,提出兩個問題:第一、你能理解為什么把圓、橢圓、雙曲線和拋物線叫做圓錐曲線;第二、你能舉出現(xiàn)實生活中圓錐曲線的例子.當學生把上述兩個問題回答清楚后,要引導學生一起探究P41頁上的問題(同桌的兩位同學準備無彈性的細繩子一條(約10cm長,兩端各結一個套),教師準備無彈性細繩子一條(約60cm,一端結個套,另一端是活動的),圖釘兩個).當套上鉛筆,拉緊繩子,移動筆尖,畫出的圖形是橢圓.啟發(fā)性提問:在這一過程中,你能說出移動的筆。▌狱c)滿足的幾何條件是什么?