1.1.2 弧度制
|
學(xué) 習(xí) 目 標(biāo)
|
核 心 素 養(yǎng)
|
|
1.了解弧度制下,角的集合與實數(shù)集之間的一一對應(yīng)關(guān)系.
2.理解“弧度的角”的定義,能進行弧度與角度的換算、掌握弧長公式和扇形面積公式,熟悉特殊角的弧度數(shù).(重點、難點)
3.了解“角度制”與“弧度制”的區(qū)別與聯(lián)系.(易錯點)
|
1.通過本節(jié)課的學(xué)習(xí),了解引入弧度制的必要性,提升學(xué)生數(shù)學(xué)抽象素養(yǎng).
2.在類比和數(shù)學(xué)運用過程中,培養(yǎng)學(xué)生數(shù)學(xué)建模和數(shù)學(xué)運算素養(yǎng).
|


1.度量角的兩種單位制
(1)角度制
①定義:用度作為單位來度量角的單位制.
②1度的角:周角的.
(2)弧度制
①定義:以弧度作為單位來度量角的單位制.
②1弧度的角:長度等于半徑長的弧所對的圓心角.
2.弧度數(shù)的計算

思考:比值與所取的圓的半徑大小是否有關(guān)?
提示:一定大小的圓心角α所對應(yīng)的弧長與半徑的比值是唯一確定的,與半徑大小無關(guān).
3.角度制與弧度制的換算

4.一些特殊角與弧度數(shù)的對應(yīng)關(guān)系
|
度
|
0°
|
30°
|
45°
|
60°
|
90°
|
120°
|
135°
|
150°
|
180°
|
270°
|
360°
|
|
弧
度
|
0
|
|
|
|
|
|
|
|
π
|
|
2π
|
5.扇形的弧長和面積公式
設(shè)扇形的半徑為R,弧長為l,α(0<α<2π)為其圓心角,則:
(1)弧長公式:l=αR.
(2)扇形面積公式:S=lR=αR2.

1.下列說法中錯誤的是( )
A.1弧度的角是周角的
B.弧度制是十進制,而角度制是六十進制
C.1弧度的角大于1度的角
D.根據(jù)弧度的定義,180°一定等于π弧度
A [A錯誤,1弧度的角是周角的.B、C、D都正確.]
2.(1)化為角度是________.
(2)105°的弧度數(shù)是________.
(1)252° (2) [(1)=°=252°;
(2)105°=105× rad= rad.]
3.半徑為2,圓心角為的扇形的面積是________.
[由已知得S扇=××22=.]
4.-π是第________象限的角.
三 [-π=-8π+,∵是第三象限角,
∴-π也是第三象限角.]