一、知識(shí)梳理
數(shù)學(xué)歸納法
一般地,證明一個(gè)與正整數(shù)n有關(guān)的命題,可按下列步驟進(jìn)行:
(1)(歸納奠基)證明當(dāng)n取第一個(gè)值n0(n0∈N+)時(shí)命題成立.
(2)(歸納遞推)假設(shè)當(dāng)n=k(k≥n0,k∈N+)時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.
只要完成這兩個(gè)步驟,就可以斷定命題對(duì)從n0開始的所有正整數(shù)n都成立.
二、教材衍化
1.在應(yīng)用數(shù)學(xué)歸納法證明凸n邊形的對(duì)角線為n(n-3)條時(shí),第一步檢驗(yàn)n等于( )
A.1 B.2
C.3 D.4
解析:選C.凸n邊形邊數(shù)最小時(shí)是三角形,故第一步檢驗(yàn)n=3.
2.已知{an}滿足an+1=a-nan+1,n∈N*,且a1=2,則a2=________,a3=________,a4=________,猜想an=________.