1.一元二次不等式的概念
只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式,稱為一元二次不等式.
2.一元二次不等式的一般形式
(1)ax2+bx+c>0(a≠0).
(2)ax2+bx+c≥0(a≠0).
(3)ax2+bx+c<0(a≠0).
(4)ax2+bx+c≤0(a≠0).
思考1:不等式x2-y2>0是一元二次不等式嗎?
提示:此不等式含有兩個(gè)變量,根據(jù)一元二次不等式的定義,可知不是一元二次不等式.
3.一元二次不等式的解與解集
使一元二次不等式成立的未知數(shù)的值,叫做這個(gè)一元二次不等式的解,其解的集合,稱為這個(gè)一元二次不等式的解集.
思考2:類比“方程x2=1的解集是{1,-1},解集中的每一個(gè)元素均可使等式成立”.不等式x2>1的解集及其含義是什么?
提示:不等式x2>1的解集為{x|x<-1或x>1},該集合中每一個(gè)元素都是不等式的解,即不等式的每一個(gè)解均使不等式成立.
4.三個(gè)“二次”的關(guān)系
|
設(shè)y=ax2+bx+c(a>0),方程ax2+bx+c=0的判別式Δ=b2-4ac
|