【例1】 等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項公式;
(2)若a3,a5分別為等差數(shù)列{bn}的第3項和第5項,試求數(shù)列{bn}的通項公式及前n項和Sn.
[解] (1)設{an}的公比為q,
由已知得16=2q3,解得q=2,∴an=2×2n-1=2n.
(2)由(1)得a3=8,a5=32,
則b3=8,b5=32.
設{bn}的公差為d,則有
解得
所以bn=-16+12(n-1)=12n-28.
所以數(shù)列{bn}的前n項和
Sn==6n2-22n.
在等差數(shù)列和等比數(shù)列的通項公式an與前n項和公式Sn中,共涉及五個量:a1,an,n,d(或q),Sn,其中a1和d(或q)為基本量,“知三求二”是指將已知條件轉換成關于a1,d(q),an,Sn,n的方程組,利用方程的思想求出需要的量,當然在求解中若能運用等差(比)數(shù)列的性