基礎(chǔ)知識(shí)整合
1.倒序相加法
如果一個(gè)數(shù)列{an}的前n項(xiàng)中首末兩端等“距離”的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前n項(xiàng)和即可用倒序相加法,如等差數(shù)列的前n項(xiàng)和即是用此法推導(dǎo)的.
2.錯(cuò)位相減法
如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,那么這個(gè)數(shù)列的前n項(xiàng)和即可用此法來(lái)求,如等比數(shù)列的前n項(xiàng)和就是用此法推導(dǎo)的.
3.裂項(xiàng)相消法
把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí)中間的一些項(xiàng)可以相互抵消,從而求得其和.
4.分組轉(zhuǎn)化法
一個(gè)數(shù)列的通項(xiàng)公式是由若干個(gè)等差數(shù)列或等比數(shù)列或可求和的數(shù)列組成,則求和時(shí)可用分組轉(zhuǎn)化法,分別求和后再相加減.
5.并項(xiàng)求和法
一個(gè)數(shù)列的前n項(xiàng)和,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.形如an=(-1)nf(n)類型,可采用兩項(xiàng)合并求解.
常見的拆項(xiàng)公式
(1)=-;
(2)=;
(3)=-.
1.(2019·新余三校聯(lián)考)數(shù)列{an}的通項(xiàng)公式是an=(-1)n(2n-1),則該數(shù)列的前100項(xiàng)之和為( )
A.-200 B.-100