[考綱傳真] 1.理解等比數(shù)列的概念.2.掌握等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式.3.能在具體的問題情境中識(shí)別數(shù)列的等比關(guān)系,并能用等比數(shù)列的有關(guān)知識(shí)解決相應(yīng)的問題.4.了解等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
1.等比數(shù)列的有關(guān)概念
(1)定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于同一個(gè)常數(shù)(不為零),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的數(shù)學(xué)表達(dá)式為=q(n∈N*,q為非零常數(shù)).
(2)等比中項(xiàng):如果在a與b中間插入一個(gè)數(shù)G,使得a,G,b成等比數(shù)列,那么根據(jù)等比數(shù)列的定義,=,G2=ab,G=±,那么G叫作a與b的等比中項(xiàng).即:G是a與b的等比中項(xiàng)⇔a,G,b成等比數(shù)列⇔G2=aB.
2.等比數(shù)列的有關(guān)公式
(1)通項(xiàng)公式:an=a1qn-1=amqn-m.
(2)前n項(xiàng)和公式:
Sn=
1.在等比數(shù)列{an}中,若m+n=p+q=2k(m,n,p,q,k∈N*),則am·an=ap·aq=a.
2.若數(shù)列{an},{bn}(項(xiàng)數(shù)相同)是等比數(shù)列,則{λan}(λ≠0),,{a},{an·bn},仍然是等比數(shù)列.