[命題解讀] 1.概率與統(tǒng)計(jì)是高考中相對獨(dú)立的一個內(nèi)容,處理問題的方式、方法體現(xiàn)了較高的思維含量.該類問題以應(yīng)用題為載體,注重考查應(yīng)用意識及閱讀理解能力、分類討論與化歸轉(zhuǎn)化能力.
2.概率問題的核心是概率計(jì)算,其中事件的互斥、對立、獨(dú)立是概率計(jì)算的核心,排列組合是進(jìn)行概率計(jì)算的工具,統(tǒng)計(jì)問題的核心是樣本數(shù)據(jù)的獲得及分析方法,重點(diǎn)是頻率分布直方圖、莖葉圖和樣本的數(shù)字特征,但近兩年全國卷突出回歸分析與獨(dú)立性檢驗(yàn)的考查.
3.離散型隨機(jī)變量的分布列及其均值的考查是歷年高考的重點(diǎn),難度多為中檔類題目,特別是與統(tǒng)計(jì)內(nèi)容滲透,背景新穎,充分體現(xiàn)了概率與統(tǒng)計(jì)的工具性和交匯性.
統(tǒng)計(jì)與統(tǒng)計(jì)案例
以實(shí)際生活中的事例為背景,通過對相關(guān)數(shù)據(jù)的統(tǒng)計(jì)分析、抽象概括,作出估計(jì)、判斷,常與抽樣方法、莖葉圖、頻率分布直方圖、概率等知識交匯考查,考查數(shù)據(jù)處理能力,分析問題、解決問題的能力.
【例1】 (2018·全國卷Ⅱ)如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額y(單位:億元)的折線圖.
為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了y與時間變量t的兩個線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時間變量t的值依次為1,2,…,17)建立模型①:y=-30.4+13.5t;根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為1,2,…,7)建立模型②:y=99+17.5t.