[命題解讀] 圓錐曲線是平面解析幾何的核心內(nèi)容,每年高考必考一道解答題,常以求曲線的標(biāo)準(zhǔn)方程、位置關(guān)系、定點(diǎn)、定值、最值、范圍、探索性問題為主.這些試題的命制有一個(gè)共同的特點(diǎn),就是起點(diǎn)低,但在第(2)問或第(3)問中一般都伴有較為復(fù)雜的運(yùn)算,對(duì)運(yùn)算能力、分析問題、解決問題的能力要求較高,難度較大,常以壓軸題的形式出現(xiàn).
圓錐曲線中的幾何證明問題
圓錐曲線中的幾何證明一般包括兩大方面:一是位置關(guān)系的證明,如證明相切、垂直、過定點(diǎn)等,二是數(shù)量關(guān)系的證明,如存在定值、恒成立、線段或角相等等.
【例1】 (2018·全國卷Ⅰ)設(shè)橢圓C:+y2=1的右焦點(diǎn)為F,過F的直線l與C交于A,B兩點(diǎn),點(diǎn)M的坐標(biāo)為(2,0).
(1)當(dāng)l與x軸垂直時(shí),求直線AM的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),證明:∠OMA=∠OMB.
[解] (1)由已知得F(1,0),l的方程為x=1.
由已知可得,點(diǎn)A的坐標(biāo)為或.
又M(2,0),所以AM的方程為y=-x+或y=x-.
(2)證明:當(dāng)l與x軸重合時(shí),∠OMA=∠OMB=0°.
當(dāng)l與x軸垂直時(shí),OM為AB的垂直平分線,所以∠OMA=∠OM B.
當(dāng)l與x軸不重合也不垂直時(shí),設(shè)l的方程為y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),
則x1<,x2<,直線MA,MB的斜率之和為kMA+kMB=+.
由y1=kx1-k,y2=kx2-k得
kMA+kMB=.
將y=k(x-1)代入+y2=1得