[考綱傳真] 1.理解等比數(shù)列的概念.2.掌握等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式.3.能在具體的問(wèn)題情境中識(shí)別數(shù)列的等比關(guān)系,并能用等比數(shù)列的有關(guān)知識(shí)解決相應(yīng)的問(wèn)題.4.了解等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
1.等比數(shù)列的有關(guān)概念
(1)定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù)(不為零),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的數(shù)學(xué)表達(dá)式為=q(n∈N*,q為非零常數(shù)).
(2)等比中項(xiàng):如果a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng).即G是a與b的等比中項(xiàng)⇒a,G,b成等比數(shù)列⇒G2=ab.
2.等比數(shù)列的有關(guān)公式
(1)通項(xiàng)公式:an=a1qn-1=amqn-m.
(2)前n項(xiàng)和公式:
Sn=
[常用結(jié)論]
1.在等比數(shù)列{an}中,若m+n=p+q=2k(m,n,p,q,k∈N*),則am·an=ap·aq=a.
2.若數(shù)列{an},{bn}(項(xiàng)數(shù)相同)是等比數(shù)列,則{λan}(λ≠0),,{a},{an·bn},仍然是等比數(shù)列.
3.等比數(shù)列{an}的前n項(xiàng)和為Sn,則Sn,S2n-Sn,S3n-S2n仍成等比數(shù)列,其公比為qn,其中當(dāng)公比為-1時(shí),n為偶數(shù)時(shí)除外.
[基礎(chǔ)自測(cè)]
1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”)
(1)滿足an+1=qan(n∈N*,q為常數(shù))的數(shù)列{an}為等比數(shù)列.( )