[考綱傳真] 1.理解復(fù)數(shù)的概念,理解復(fù)數(shù)相等的充要條件.2.了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.3.能進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算,了解兩個(gè)具體復(fù)數(shù)相加、減的幾何意義.
1.復(fù)數(shù)的有關(guān)概念
(1)復(fù)數(shù)的概念:形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中a,b分別是它的實(shí)部和虛部.若b=0,則a+bi為實(shí)數(shù),若b≠0,則a+bi為虛數(shù),若a=0且b≠0,則a+bi為純虛數(shù).
(2)復(fù)數(shù)相等:a+bi=c+di⇔a=c,b=d(a,b,c,d∈R).
(3)共軛復(fù)數(shù):a+bi與c+di共軛⇔a=c,b=-d(a,b,c,d∈R).
(4)復(fù)數(shù)的模:向量的模r叫做復(fù)數(shù)z=a+bi的模,即|z|=|a+bi|=.
2.復(fù)數(shù)的幾何意義
復(fù)數(shù)z=a+bi復(fù)平面內(nèi)的點(diǎn)Z(a,b)平面向量=(a,b).
3.復(fù)數(shù)的運(yùn)算
(1)復(fù)數(shù)的加、減、乘、除運(yùn)算法則
設(shè)z1=a+bi,z2=c+di(a,b,c,d∈R),則
①加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;
②減法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;
③乘法:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;
④除法:===+i(c+di≠0).
(2)復(fù)數(shù)加法的運(yùn)算定律
復(fù)數(shù)的加法滿足交換律、結(jié)合律,即對(duì)任何z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).
[常用結(jié)論]
1.(1±i)2=±2i;=i;=-i.