[考綱傳真] 1.掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.2.能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題.
1.正弦、余弦定理
在△ABC中,若角A,B,C所對的邊分別是a,b,c,R為△ABC的外接圓半徑,則
|
定理
|
正弦定理
|
余弦定理
|
|
內(nèi)容
|
===2R.
|
a2=b2+c2-2bccos_A;
b2=c2+a2-2cacos_B;
c2=a2+b2-2abcos_C.
|
|
變形
|
(1)a=2Rsin A,b=2Rsin B,c=2Rsin C;
(2)a∶b∶c=sin A∶sin B∶sin C;
(3)==2R.
|
cos A=;
cos B=;
cos C=.
|
2.三角形常用面積公式
(1)S=a·ha(ha表示邊a上的高);
(2)S=absin C=acsin B=bcsin A;
(3)S=r(a+b+c)(r為內(nèi)切圓半徑).
3.實際問題中的常用角
(1)仰角和俯角:與目標視線在同一鉛垂平面內(nèi)的水平視線和目標視線的夾角,目標視線在水平視線上方的角叫做仰角,目標視線在水平視線下方的角叫做俯角(如圖1).