第13練 必考題型——導(dǎo)數(shù)與單調(diào)性
[題型分析·高考展望] 利用導(dǎo)數(shù)研究函數(shù)單調(diào)性是高考每年必考內(nèi)容,多以綜合題中某一問的形式考查,題目承載形式多種多樣,但其實質(zhì)都是通過求導(dǎo)判斷導(dǎo)數(shù)符號,確定單調(diào)性.題目難度為中等偏上,一般都在最后兩道壓軸題上,這是二輪復(fù)習(xí)的得分點,應(yīng)高度重視.
常考題型精析
題型一 利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間
求函數(shù)的單調(diào)區(qū)間的“兩個”方法
(1)①確定函數(shù)y=f(x)的定義域;
②求導(dǎo)數(shù)y′=f′(x);
③解不等式f′(x)>0,解集在定義域內(nèi)的部分為單調(diào)遞增區(qū)間;
④解不等式f′(x)<0,解集在定義域內(nèi)的部分為單調(diào)遞減區(qū)間.
(2)①確定函數(shù)y=f(x)的定義域;
②求導(dǎo)數(shù)y′=f′(x),令f′(x)=0,解此方程,求出在定義區(qū)間內(nèi)的一切實根;
③把函數(shù)f(x)的間斷點(即f(x)的無定義點)的橫坐標(biāo)和上面的各實數(shù)根按由小到大的順序排列起來,然后用這些點把函數(shù)f(x)的定義域分成若干個小區(qū)間;