專題一:三角與向量的交匯題型分析及解題策略
【命題趨向】
三角函數(shù)與平面的向量的綜合主要體現(xiàn)為交匯型,在高考中,主要出現(xiàn)在解答題的第一個(gè)試題位置上,其難度中等偏下,分值一般為12分,交匯性主要體現(xiàn)在:三角函數(shù)恒等變換公式、性質(zhì)與圖象與平面的向量的數(shù)量積及平面向量的平行、垂直、夾角及模之間都有著不同程度的交匯,在高考中是一個(gè)熱點(diǎn).如08年安徽理科第5題(5分),考查三角函數(shù)的對(duì)稱性與向量平移、08年山東文第8題理第15題(5分)考查兩角和與差與向量垂直、08福建文理第17題(12分)考查三角函數(shù)的求值與向量積、07的天津文理第15題(4分)考查正余弦定理與向量數(shù)量積等.根據(jù)2009年考綱預(yù)計(jì)在09年高考中解答題仍會(huì)涉及三角函數(shù)的基本恒等變換公式、誘導(dǎo)公式的運(yùn)用、三角函數(shù)的圖像和性質(zhì)、向量的數(shù)量積、共線(平行)與垂直的充要條件條件.主要考查題型:(1)考查純?nèi)呛瘮?shù)函數(shù)知識(shí),即一般先通過三角恒等變換公式化簡(jiǎn)三角函數(shù)式,再求三角函數(shù)的值或研究三角函數(shù)的圖象及性質(zhì);(2)考查三角函數(shù)與向量的交匯,一般是先利用向量知識(shí)建立三角函數(shù)關(guān)系式,再利用三角函數(shù)知識(shí)求解;(3)考查三角函數(shù)知識(shí)與解三角形的交匯,也就是將三角變換公式與正余弦定理交織在一起.
【考試要求】
1.理解任意角的正弦、余弦、正切的定義.了解余切、正割、余割的定義.掌握同角三角函數(shù)的基本關(guān)系式.掌握正弦、余弦的誘導(dǎo)公式.了解周期函數(shù)與最小正周期的意義.
2.掌握兩角和與兩角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.
3.能正確運(yùn)用三角公式進(jìn)行簡(jiǎn)單三角函數(shù)式的化簡(jiǎn)、求值和恒等式證明.
4.理解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖像和性質(zhì),會(huì)用“五點(diǎn)法”畫正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(ωx+φ)的簡(jiǎn)圖,理解A,ω,φ的物理意義.
5.掌握正弦定理、余弦定理,并能初步運(yùn)用它們解斜三角形.
6.掌握向量的加法和減法.掌握實(shí)數(shù)與向量的積,理解兩個(gè)向量共線的充要條件.
7.了解平面向量的基本定理.理解平面向量的坐標(biāo)的概念,掌握平面向量的坐標(biāo)運(yùn)算.
8.掌握平面向量的數(shù)量積及其幾何意義,了解用平面向量的數(shù)量積可以處理有關(guān)長(zhǎng)度、角度和垂直的問題,掌握向量垂直的條件.
9.掌握平面兩點(diǎn)間的距離公式以及線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并且能熟練運(yùn)用.掌握平移公式.
點(diǎn)擊此處,查看全文